

Generative AI in the Enterprise – Model
Customization
A Scalable and Modular Production Infrastructure with NVIDIA for
AI Large Language Model Customization
October 2023

H19825

Design Guide

Abstract
This design guide describes the architecture and design of the Dell
Validated Design for Generative AI Model Customization with NVIDIA,
a collaboration between Dell Technologies and NVIDIA to enable high
performance, scalable, and modular full-stack generative AI model
customization solutions for large language models in the enterprise.

Dell Generative AI Solutions

Copyright

2 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

The information in this publication is provided as is. Dell Inc. makes no representations or warranties of any kind with respect
to the information in this publication, and specifically disclaims implied warranties of merchantability or fitness for a particular
purpose.

Use, copying, and distribution of any software described in this publication requires an applicable software license.
Copyright © 2023 Dell Inc. or its subsidiaries. Published in the USA 10/23 Design Guide H19825.

Dell Inc. believes the information in this document is accurate as of its publication date. The information is subject to change
without notice.

 Contents

3 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Contents

Chapter 1 Introduction 5
Overview ... 5
Document purpose .. 5
Audience ... 6

Chapter 2 Customizing Large Language Models 7
Large language models ... 7
What is model customization? ... 9
Model customization methods ... 10

Chapter 3 Solution Components 13
Model customization using NVIDIA AI Enterprise .. 13
Dell PowerEdge servers and NVIDIA GPUs .. 16
Dell PowerScale Storage .. 17
Dell and NVIDIA networking .. 18

Chapter 4 Solution Architecture 19
Architecture overview .. 19
Physical architecture ... 23

Chapter 5 Validation Results 29
System configurations ... 29
Model customization validation ... 30

Chapter 6 Performance Characterization 33
Overview ... 33
Performance test results ... 34
Sizing and scaling guidelines .. 35

Chapter 7 Dell Professional Services for Generative AI 36
Advisory Services for Generative AI .. 36
Implementation Services for Generative AI ... 36
Adoption Services for Generative AI ... 37
Managed Services for Generative AI ... 37
Scale Services for Generative AI ... 37

Chapter 8 Conclusion 38
Summary .. 38
We value your feedback .. 39

Contents

4 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

Chapter 9 References 40
Dell Technologies documentation ... 40
NVIDIA documentation .. 40
Other documentation ... 40

Appendix A Sample Scripts 41
Supervised Fine Tuning with Llama 2 7B .. 41
LoRA with Llama 2 70B on two nodes ... 43

 Chapter 1: Introduction

5 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Chapter 1 Introduction

Overview
Generative AI, the branch of artificial intelligence (AI) that is designed to generate new
data, images, code, or other types of content that humans do not explicitly program, is
rapidly becoming pervasive across nearly all facets of business and technology.

Earlier this year, Dell Technologies and NVIDIA introduced a groundbreaking project for
generative AI, with a joint initiative to bring generative AI to the world’s enterprise data
centers. This project delivers a set of validated designs for full-stack integrated hardware
and software solutions that enable enterprises to create and run custom AI large language
models (LLMs) using unique data that is relevant to their own organization.

An LLM is an advanced type of AI model that has been trained on an extensive dataset,
typically using deep learning techniques, which can understand, process, and generate
natural language text. However, AI built on public or generic models is not well suited for
an enterprise to use in their business. Enterprise use cases require domain-specific
knowledge to train, customize, and operate their LLMs.

Model customization is the process of retraining an existing or foundation generative AI
model for task-specific or domain-specific use cases. For large models, it is more efficient
to customize a foundation model than to train a model from the beginning. Some
customization techniques in use today include fine-tuning, instruction tuning, prompt
learning (including prompt tuning and P-tuning), reinforcement learning with human
feedback, transfer learning, and use of adapters (or adaptable transformers).

Dell Technologies and NVIDIA have designed a scalable, modular, and high-performance
architecture that enables enterprises everywhere to create a range of generative AI
solutions that apply to their businesses, reinvent their industries, and give them a
competitive advantage.

This design for model customization is the second in a series of validated designs for
generative AI that focus on all facets of the generative AI life cycle, including inferencing,
model customization, and model training. While these designs are focused on generative
AI use cases, the architecture is more broadly applicable to more general AI use cases as
well.

Document purpose
This guide describes the Dell Validated Design for Generative AI Model Customization
with NVIDIA.

It describes the validated design and reference architecture for a modular and scalable
platform for generative AI in the enterprise. The guide focuses on model customization,

Chapter 1: Introduction

6 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

which is retraining a model with custom data to tailor it to perform specific tasks or
generate content that aligns with specific use cases.

This guide can be read alongside the associated Generative AI in the Enterprise white
paper, and can be used together with the Generative AI in the Enterprise – Inferencing
design guide. The white paper provides an overview of generative AI, including its
underlying principles, benefits, architectures, and techniques; the various types of
generative AI models and how they are used in real-world applications; and descriptions
of the various Dell and NVIDIA hardware and software components to be used in the
series of validated designs to be released. The inferencing design guide describes a
design for inferencing that complements this design.

Audience
This design guide is intended for enterprise practitioners and experts interested in the
implementation of solutions and infrastructure for generative AI, including professionals
and stakeholders involved in the development, deployment, and management of
generative AI systems.

Key roles include AI architects, IT infrastructure architects, and designers. Other audience
members may include system administrators and IT operations personnel, AI engineers
and developers, and data scientists and AI researchers. Some knowledge of AI model
development and life cycle, generative AI principles, and terminology is assumed,
including familiarity with the associated white paper.

https://infohub.delltechnologies.com/t/generative-ai-in-the-enterprise/
https://infohub.delltechnologies.com/t/design-guide-generative-ai-in-the-enterprise-inferencing/

 Chapter 2: Customizing Large Language Models

7 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Chapter 2 Customizing Large Language
Models

This chapter provides a brief overview of Large Language Models (LLMs) and describes
the methods and techniques for model customization in generative AI, and how it fits into
the general workflow of generative AI development and operations. Model customization
is a general term that includes a range of different methods and techniques for tuning and
adapting pretrained foundation models.

Large language models
LLMs are advanced natural language processing models that use deep learning
techniques to understand and generate human language. LLMs can include a range of
architectures and approaches, such as recurrent neural networks (RNNs), transformers,
or rule-based systems. Generative Pre-trained Transformer (GPT) is a popular and
influential example of an LLM that is based on transformer architecture, which is a deep
neural network architecture designed to handle sequential data efficiently. Transformers
use self-attention mechanisms to process input sequences and learn contextual
relationships between words, enabling them to generate coherent and contextually
relevant language.

A foundation model is an LLM that has been trained on a large dataset for a specific task
before it is fine-tuned or adapted for a more specialized task. These models are typically
trained on vast amounts of general data to learn basic features, patterns, and context
within the data. Foundation models are crucial because they provide a starting point that
already understands a broad range of concepts and language patterns.

Some popular examples of community-built foundation LLMs include Llama 2, BLOOM,
Falcon, and MPT.

In this design, we primarily focus on Llama 2. Llama 2, jointly developed by Meta and
Microsoft, is freely available for research and commercial use. It offers a collection of
pretrained models for generative text and fine-tuned models optimized for chat use cases.
The Llama 2 models are trained on an extensive 2 trillion tokens dataset, featuring double
the context length of Llama 1. Moreover, Llama 2-chat models have been further enriched
by over 1 million new human annotations. These models are built on an optimized
transformer architecture and come in various parameter sizes, including 7B, 13B, and
70B. See Meta’s Responsible Use Guide for using Llama in your enterprise deployment.

Foundation
models

https://ai.meta.com/llama/responsible-use-guide/

Chapter 2: Customizing Large Language Models

8 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

The Llama 2 model comes in three sizes: 7B, 13B and 70B parameters. The following
table provides details that can guide you in selecting the right model for your use case:

Table 1. Example use cases for Llama models

Foundation model Strengths and use cases

Llama 2 7B Fastest model for simple language tasks like text classification and
spelling correction.

Llama 2 13B

More accurate and verbose responses compared to Llama 2 7B,
especially for tasks that require generating long output sequences. It can
be helpful for developing chatbots, writing blog posts, articles, and
summarization.

Llama 2 70B The most capable model for generative tasks such as creative writing
and factual use-cases like question answering.

Parameters in LLMs refer to the learnable components or weights of the neural network
that make up the model. These parameters determine how the model processes input
data and makes predictions or generates output. Typically, GPTs have millions (M) to
billions (B) of parameters. These parameters are learned during the training process, in
which the model is exposed to vast amounts of data and adjusts its parameters to
generate language. Assuming the model architecture and training data are comparable,
generally the higher the parameters in the model, the greater the accuracy and capability
of the models. Although, a smaller model that is trained to be specific to a particular
outcome might be more accurate. Models with higher parameters also require more
compute resources, especially GPU resources. Therefore, a balance must be considered
when choosing a model.

Tokenization in generative AI refers to the process of breaking down a piece of text into
smaller units called tokens. These tokens can be words, subwords, or even characters,
depending on the granularity chosen for the tokenization process.

In natural language processing (NLP) tasks, tokenization is a critical step because it
transforms continuous text into discrete units that machine learning models can process.
By segmenting text into tokens, the model gains a structured representation of the input,
which it can then analyze, understand, and generate responses The choice of
tokenization strategy (word-level, subword-level, character-level) and the specific
tokenizer used can significantly impact the model's performance on various tasks.

For use cases related to inferencing, the operational goal of model customization, see the
Generative AI in the Enterprise – Inferencing design guide.

Parameters

Tokenization

Use cases

https://infohub.delltechnologies.com/t/design-guide-generative-ai-in-the-enterprise-inferencing/

 Chapter 2: Customizing Large Language Models

9 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

What is model customization?
As mentioned in the introduction, model customization refers to adapting a foundation
model to perform a specific task or cater to a particular domain. Model customization is
achieved by customizing the model on a task-specific dataset or by adjusting its
parameters, such as prompts or hyperparameters, to optimize its performance for the
wanted use case. Customization enhances the model's ability to generate accurate and
contextually relevant outputs for the targeted application.

Model customization in the generative AI workflow
Customizing a foundational model like Llama 2 typically involves several steps, although
the specifics might vary depending on the platform and tools in use. To illustrate the
workflow, consider the example of a city developing a chatbot for its residents, enabling
residents to query the chatbot for details about city services:

• Data collection and preprocessing─Begin by collecting a dataset relevant to the
specific domain or task that the model needs to perform. The dataset must
comprehensively represent the language and context required for the model to
understand and generate responses. Then, preprocess the data to ensure
consistency by removing noise and formatting it appropriately. This preprocessing
might include tasks like tokenization, lemmatization, and data augmentation.

In our example, this step involves gathering the city’s current documentation, web
pages, PDFs, and other sources of information for its residents. The data must be
processed so that it can be used for training.

• Selection of the foundation model and customization method─The right choice
of a foundation model and customization method is crucial. Given the dynamic
nature of this field, selecting the most suitable model and method can be
challenging. It is advisable to start with a smaller model and a well-understood
method as recognized by the data scientists involved in the project.

In our example, we can start with the Llama 2 7B model and LoRA as the
customization technique.

• Model customization─Employ the preprocessed data to customize the foundation
language model. This step also includes hyperparameter tuning, validation, and
testing. In our example, this step entails training the model on the processed
dataset to make it specific to the city.

• Deployment─When the customized model aligns with the performance
requirements, the model is deployed on the chosen platform or application for real-
world use. This deployment might involve the development of APIs, user interfaces,
or other components to facilitate interactions with the model. In our example, you
can deploy the chatbot on the city’s web page.

• Monitoring, iteration, and feedback─The model must be continuously monitored
for its performance in real-world scenarios. You can continue to update the model
based on usage and feedback.

Chapter 2: Customizing Large Language Models

10 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

Model customization methods

Customizing an LLM at inference time involves making model-specific adaptations or
adjustments to its behavior during the inference process. This customization allows the
model to generate responses or perform tasks that are tailored to a particular application
or user needs without retraining the entire model.

Prompt engineering
A common way to achieve inference-time customization of an LLM is prompt engineering.
Prompt engineering involves crafting effective input queries or prompts to elicit required
responses from a generative AI model. The goal is to construct prompts that guide the
model towards generating the required output, which can involve using specific keywords,
phrasing, or context to influence the generated content.

Prompt engineering is especially valuable when using models like Llama 2 as it allows you
to tailor their behavior for specific applications. It can be a crucial component in designing
conversational agents, automated customer support systems, content generation, and
more, where you need to guide the model's responses effectively.

Model
customization at
inference

 Chapter 2: Customizing Large Language Models

11 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

The following tables provide an example of prompt engineering from our validation work
and how the response from the model can be shaped using specific prompts:

Table 2. Examples of prompt engineering for describing the earth1

Prompt Response from Llama 2 70B model

In a sentence can you
creatively describe the planet
earth to a five-year-old?

I’m not sure I can do it in a sentence, but I’ll give it a try.
The Earth is a big, round ball that is covered with water and
land.

How would you concisely
describe planet earth to a high
school senior?

I would say that the Earth is a planet that is the only one in
the solar system that has life on it. It is the third planet from
the Sun and is the largest of the terrestrial planets. The Earth
is made up.

Can you write a multiline
poem to describe the planet
earth?

The earth is a beautiful place,
With its mountains and valleys,
And its oceans and seas.
It’s a place of wonder and awe,
Where life can be found in abundance,
And where the sun shines bright.
The earth is a place of mystery,
With its secrets yet to be discovered,
And its beauty yet to be seen.
It’s a place of hope and promise,
Where dreams can come true,
And where the future is bright.
The earth is a place of love,
Where people can come together,
And where peace can be found.

Foundation models do not have embedded domain-specific knowledge and as such might
have limited use with prompt engineering. However, prompt engineering can be
incorporated with models that are customized with domain-specific knowledge. For
example, a bank that develops a chatbot can append the following text to the prompts for
the end user: Your responses must exclude any content that might be harmful, unethical,
racist, sexist, toxic, dangerous, or illegal.

Model customization of LLMs refers to a technique in which an LLM in which a model is
initially trained on a large dataset for a specific language-related task and then used for
various other language understanding and generation tasks. This approach has
revolutionized the field NPL, enabling enterprises to harness readily available models like
Llama 2 to develop customized models that can be geared for their real-world language-
related tasks. Some of the popular model customization techniques include the following:

1 The results are from the Llama 2 70B model with the following parameters: top_k=1,
top_p=0.1, and temperature=0.5.

Model
customization
through
retraining

Chapter 2: Customizing Large Language Models

12 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

Supervised fine-tuning
A popular model customization method is supervised fine-tuning (SFT) that adapts the
model to excel in particular language understanding or text generation tasks, such as text
classification, question answering, language translation, or text summarization. This
process begins with a foundation LLM and proceeds by training it further using a dataset
containing labeled examples specific to the required task. Through backpropagation on
the task-specific data, the entire model's parameters are adjusted, potentially enhancing
its performance on the targeted task.

Parameter-Efficient Fine-Tuning
As the parameters of popular models have increased, the process of fine-tuning the entire
model has become computationally intensive. The primary objective of Parameter-
Efficient Fine-Tuning (PEFT) is to fine-tune only a small fraction of the model's
parameters, all while attaining comparable performance to full fine-tuning, and
substantially mitigating the computational demands. PEFT attains this level of efficiency
by freezing select layers in the pretrained model and solely concentrating on the fine-
tuning of certain layers. This approach allows the model to adapt to fresh tasks while
significantly reducing the computational burden, and while reducing the reliance on the
availability of a large number of labeled examples.

There are several methods of customizing a large language model using PEFT. In this
design guide, we focus on P-tuning and Low-Rank Adaptation (LoRA).

P-tuning employs a small, trainable model preceding the LLM. This smaller model's
purpose is to encode the text prompt and generate specialized virtual tokens specific to
the task at hand. These task-specific virtual tokens are then prepended to the prompt and
then forwarded to the LLM. When the tuning process is finalized, these virtual tokens are
cataloged in a lookup table for later use during inference, effectively supplanting the
smaller model. By fine-tuning solely, the parameters of the compact model and keeping
the LLM's parameters fixed, P-tuning significantly reduces the computational resources
required for model customization.

Low-Rank Adaptation (LoRA) introduces an innovative methodology for fine-tuning large
language models to excel in specific tasks or domains. This approach is characterized by
its unique strategy: LoRA maintains the integrity of the pretrained model weights while
extending its capabilities through the integration of additional layers known as "rank-
decomposition matrices." The key distinction is that only these added layers undergo
training, rather than the entire model. This selective focus on training these supplementary
layers optimizes their efficiency and computational resource use to a remarkable degree.
Therefore, LoRA achieves a substantial reduction in computational requirements while
simultaneously yielding performance that is either on par with or surpasses the results
attained using conventional fine-tuning techniques across a diverse range of tasks.

Additional PEFT techniques such as Prompt Tuning, Adapters, and IA3 are not covered in
this design guide. See the NVIDIA blog about model customization techniques.

These methods collectively offer a range of strategies for customizing LLMs to perform
effectively on specific tasks or in particular domains. Depending on the requirements of
the application, one or a combination of these methods can be employed to achieve
optimal performance.

https://developer.nvidia.com/blog/an-introduction-to-large-language-models-prompt-engineering-and-p-tuning/
https://developer.nvidia.com/blog/selecting-large-language-model-customization-techniques

 Chapter 3: Solution Components

13 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Chapter 3 Solution Components

In this chapter, we describe the primary software elements used for model customization,
including NVDIA AI Enterprise components such as the NeMo framework for generative
AI models and NVIDIA Base Command Manager Essentials.

We also describe the Dell PowerEdge servers and NVIDIA GPUs used in the design,
including GPU configurations and GPU connectivity and networking methods.

Model customization using NVIDIA AI Enterprise
NVIDIA AI Enterprise provides enterprise support for various software frameworks,
toolkits, and workflows. See the NVIDIA AI Enterprise documentation for more information
about all components available with NVIDIA AI Enterprise. The following components
incorporated in this validated design are available as part of NVIDIA AI Enterprise:

• NVIDIA NeMo framework

• Triton Inference Server

• Tensor RT-LLM

• Base Command Manager Essentials

This design uses these key software components. The following sections provide brief
descriptions of each component and how they are used for model customization.

https://docs.nvidia.com/ai-enterprise/index.html

Chapter 3: Solution Components

14 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

NVIDIA NeMo is a framework to build, customize, and deploy generative AI models with
billions of parameters. The NeMo framework provides an accelerated workflow for training
with 3D parallelism techniques. It offers a choice of several customization techniques and
is optimized for at-scale inference of large-scale models for language and image
applications, with multi-GPU and multinode configurations. The NeMo framework makes
generative AI model development easy, cost-effective, and fast for enterprises.

Figure 1. NVIDIA NeMo framework

Key components of the NeMo Framework include:

• Data curation─NeMo Data Curator is designed to handle large multilingual
datasets required for LLMs. It makes tasks like data download, text cleaning, and
deduplication easier. This tool uses advanced technologies like MPI, Dask, and
Redis Cluster to scale data curation, saving time and effort. Notably, its
deduplication feature ensures that language models are trained on unique data,
preventing redundancy and potentially reducing costs in the model development
phase, making AI more accessible and cost-effective for organizations.

• Distributed training at scale─Training billion-parameter LLM models from the
ground up is a complex task that requires powerful distributed computing, advanced
parallelism, and various precision techniques. The NeMo framework simplifies this
process by efficiently using GPU resources and memory across multiple nodes,
significantly reducing training time. It employs parallelism techniques like data,
tensor, pipeline, sequence, and sparse attention reduction to optimize training, and
it offers precision options such as FP32/TF32, BF16, and FP8. The NeMo
framework also includes innovative features like FlashAttention and Rotary
Positional Embedding for long sequences, as well as attention with Linear Biases
(ALiBi), gradient and partial checkpointing, and the Distributed Adam Optimizer to
enhance model performance and speed.

• Pretrained models for customization─NVIDIA supports publicly available models
like Llama 2 for model customization. These models need to be converted to NeMo
format. The conversion scripts are available as part of the NeMo framework.

• Model customization─The NeMo framework offers an array of techniques to refine
generic, pretrained LLMs for specialized use cases. Through these diverse
customization options, NeMo offers wide-ranging flexibility that is crucial in meeting

NVIDIA NeMo
framework

 Chapter 3: Solution Components

15 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

varying business requirements. As of the publication of this document, SFT, P-
Tuning, and LoRA are supported with Llama 2 models.

• Accelerated inference─NeMo seamlessly works with NVIDIA Triton Inference
Server, making AI inference faster and highly accurate with low delays and high
throughput. It allows for secure and efficient deployments on single GPUs or large
multinode GPU systems while maintaining safety and security standards.

• NVIDIA Triton Inference Server ─Nvidia Triton Inference Server empowers NeMo
to simplify and standardize AI inference so that you can deploy and scale ML and
deep learning models from various frameworks on GPU or CPU infrastructure. This
flexibility lets you choose the best framework for your AI projects without sacrificing
deployment options for production.

• NeMo Guardrails─NeMo Guardrails plays a pivotal role in upholding the accuracy,
appropriateness, relevance, and security of intelligent applications driven by LLMs.
It is offered as an open-source solution, encompassing all the essential code,
illustrations, and documentation that businesses require to enhance the safety of
text-generating AI applications. NeMo Guardrails seamlessly integrates with NeMo
and is compatible with all LLMs, including OpenAI's ChatGPT.

The NeMo framework is at the core of this validated design. The framework is made
available as two containers through NVIDIA’s NGC catalog: one for training and model
customization and another for inference. In this validated design, we used NeMo
Framework’s Model Customization “recipes” to customize Llama 2 models that are
converted to NeMo format using customization scripts available in the framework on
multiple nodes. The customized models were deployed to production using NeMo
inference container with Triton Inference Server. See the NeMo User Guide for more
information.

NVIDIA Triton Inference Server is inference serving software that standardizes AI model
deployment and execution and delivers fast and scalable AI in production. Enterprise
support for Triton Inference Server is available through NVIDIA AI Enterprise.

Triton Inference Server streamlines and standardizes AI inference of pretrained and
customized models by enabling teams to deploy, run, and scale trained machine learning
or deep learning models from any framework on any GPU- or CPU-based infrastructure. It
provides AI researchers and data scientists the freedom to choose the appropriate
framework for their projects without impacting production deployment. It also helps
developers deliver high-performance inference across cloud, on-premises, edge, and
embedded devices.

Triton Inference Server is integrated with the NeMo framework serving as an ideal
software for deploying generative AI models. In this validated design, we use Triton
Inference Server with the NeMo inferencing container to deploy customized Llama 2
models.

NVIDIA TensorRT-LLM is an open-source library that accelerates and optimizes inference
performance of the latest LLMs on NVIDIA GPUs. It lets developers experiment with new
LLMs, offering speed-of-light performance and quick customization without deep
knowledge of C++ or CUDA.

Triton Inference
Server

TensorRT-LLM

https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/index.html

Chapter 3: Solution Components

16 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

TensorRT-LLM wraps TensorRT’s deep learning compiler—which includes optimized
kernels from FasterTransformer, pre- and postprocessing, and multi-GPU and multinode
communication—in a simple open-source Python API for defining, optimizing, and running
LLMs for inference in production.

TensorRT is integrated with the NeMo Framework that is used in this validated design for
deploying customized Llama 2 models.

NVIDIA Base Command Manager Essentials facilitates seamless operationalization of AI
development at scale by providing features like operating system provisioning, firmware
upgrades, network and storage configuration, multi-GPU and multinode job scheduling,
and system monitoring. It maximizes the use and performance of the underlying hardware
architecture.

In this validated design, we use the NVIDIA Base Command Manager Essentials for:

• Bare metal provisioning, including deploying the operating system and drivers, and
configurating local storage in PowerEdge compute nodes.

• Network configuration, including configuring networks for PXE boot, internal node
access, POD networking, and storage networking.

• Kubernetes deployment, including configuring control plane node and worker
nodes, access control and provision of Kubernetes management toolkits and
frameworks like Prometheus, as well as for NVIDIA software deployment, including
deploying NVIDIA GPU operator.

• Slurm cluster deployment including deploying and configuring GPU Direct RDMA
and Fabric Manager

• Cluster monitoring and management, including health monitoring, fault tolerance,
resource utilization monitoring, software and package management, security and
access control, and scaling.

Dell PowerEdge servers and NVIDIA GPUs
Dell Technologies provides a diverse selection of acceleration-optimized servers with an
extensive portfolio of accelerators featuring NVIDIA GPUs.

In this design, we showcase the PowerEdge XE9680 server incorporates eight NVIDIA
H100 GPUs with NVIDIA SXM5 technology, and which is specifically tailored for
generative AI purposes.

The server includes NVIDIA NVSwitch technology, which is a high-performance, fully
connected, and scalable switch technology. It is designed to enable ultrafast
communication between multiple NVIDIA GPUs. NVIDIA NVSwitch facilitates high-
bandwidth and low-latency data transfers, making it ideal for large-scale AI and high-
performance computing (HPC) applications. The NVSwitch technology provides a
bandwidth of 900 GB/s between any two GPUs.

NVIDIA Base
Command
Manager
Essentials

Dell Servers

 Chapter 3: Solution Components

17 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

NVIDIA GPUs support various options to connect two or more GPUs, offering various
bandwidths. GPU connectivity is often required for model customization, especially when
higher performance and lower latency are crucial. Model customization is compute-
resource intensive, requiring multiple GPUs. These GPUs require high-speed connectivity
between them.

NVIDIA NVLink is a high-speed interconnect technology developed by NVIDIA for
connecting multiple NVIDIA GPUs to work in parallel. It allows for direct communication
between the GPUs with high bandwidth and low latency, enabling them to share data and
work collaboratively on compute-intensive tasks.

The following figure shows the NVIDIA GPU connectivity options for the PowerEdge
XE9680 server used in this design:

Figure 2. NVIDIA GPU connectivity in PowerEdge XE9680 servers

Dell PowerScale Storage
Dell PowerScale storage supports the most demanding AI workloads with all-flash NVMe
file storage solutions that deliver massive performance and efficiency in a compact form
factor.

There are several models used in generative AI solution architectures, all powered by the
PowerScale OneFS operating system and supporting inline data compression and
deduplication. The minimum number of PowerScale nodes per cluster is three nodes, and
the maximum cluster size is 252 nodes.

GPU
connectivity

Chapter 3: Solution Components

18 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

PowerScale F900
PowerScale F900 provides the maximum performance of all-NVMe drives in a cost-
effective configuration to address the storage needs of demanding AI workloads. Each
node is 2U in height and hosts 24 NVMe SSDs. PowerScale F900 supports TLC or QLC
drives for maximum performance. It enables you to scale raw storage from 46 TB to 736
TB per node and up to 186 PB of raw capacity per cluster.

PowerScale F600
PowerScale F600 includes NVMe drives to provide larger capacity with massive
performance in a cost-effective compact 1U form factor to power demanding workloads.
The PowerScale F600 supports TLC or QLC drives for maximum performance. Each node
allows you to scale raw storage capacity from 15.36 TB to 245 TB and up to 60 PB of raw
capacity per cluster.

Dell and NVIDIA networking
Deploying generative AI applications or training foundational AI models like Llama 2 can
be computationally demanding, particularly for larger and more complex models. To
address this demand, distributed computing is used to distribute the workload across
multiple interconnected compute nodes, where the slowest node determines the runtime
of a task. The network's role is critical in ensuring timely message delivery to all nodes,
making tail latency significant, especially in large-scale data centers with competing
workloads. Scalability and handling a growing number of nodes are essential for training
large AI models and managing extensive data.

Lossless networking, such as InfiniBand, ensures that data is transmitted without any loss
or corruption, guaranteeing the accuracy of all data packets. Remote Direct Memory
Access (RDMA) further enhances data transfer efficiency by allowing direct, high-speed,
low-latency transfers between memory, GPUs, and storage, bypassing the traditional
multistep data transfer process.

InfiniBand Next Data Rate (NDR) and High Data Rate (HDR) are generations of high-
speed interconnect technologies used in high-performance computing and data center
environments. NDR offers a data transfer rate of 400 Gbps, while HDR provides 200
Gbps.

NVIDIA Quantum InfiniBand switches high throughput, In-Network Computing, smart
acceleration engines, flexibility, and a robust architecture to achieve high performance in
generative AI computing. NVIDIA Quantum QM8700 InfiniBand Series support HDR, while
Quantum QM9700 series supports NDR. This design was validated with both the series of
switches.

The Dell PowerSwitch Z9432F-ON 100/400GbE fixed switch consists of Dell’s latest
disaggregated hardware and software data center networking solutions, providing state-
of-the-art, high-density 100/400 GbE ports and a broad range of functionality to meet the
growing demands of today’s data center environment. This innovative, next-generation
open networking high-density aggregation switch offers optimum flexibility and cost-
effectiveness for enterprise, midmarket, and cloud service providers with demanding
compute and storage traffic environments.

NVIDIA Quantum
Networking
Switches

Dell
PowerSwitch

 Chapter 4: Solution Architecture

19 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Chapter 4 Solution Architecture

Architecture overview
The Dell Validated Design for Generative AI Model Customization is a reference
architecture designed to address the challenges of customizing LLMs for enterprise use
cases. LLMs have shown tremendous potential in natural language processing tasks but
require specialized infrastructure for efficient customization and deployment.

This reference architecture serves as a blueprint, offering organizations guidelines and
best practices to design and implement scalable, efficient, and reliable infrastructure
specifically tailored for generative AI models training and customization. While its primary
focus is LLM customization, the architecture can be adapted for discriminative or
predictive AI model training.

Figure 3. Reference architecture

The following sections describe the key components of the reference architecture shown
in the preceding figure.

Chapter 4: Solution Architecture

20 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

Compute infrastructure
The compute infrastructure is a critical component of the design, responsible for the
training of AI models. Dell Technologies offers a range of acceleration-optimized servers,
equipped with NVIDIA GPUs, to handle the intense compute demands of LLMs. The
PowerEdge XE9680 server is used as the compute infrastructure for LLM model
customization in the current version of this design.

Cluster configuration
There are options for cluster configurations. The PowerEdge servers with NVIDIA GPUs
can be configured either as a Kubernetes cluster or Slurm cluster.

A Kubernetes cluster is a group of interconnected servers that run containerized
applications managed by Kubernetes, an open-source container orchestration system. In
this setup, there are control plane nodes that control the cluster and worker nodes that run
tasks. Containers are grouped into pods, which are the smallest deployable units.
Kubernetes manages the scaling and deployment of pods through replica sets and
deployments, ensuring the right number are running. Services help with load balancing
and network access to pods, and resources like ConfigMaps and Secrets are used for
configuration and sensitive data storage. Kubernetes clusters are highly scalable, making
them ideal for managing containerized applications and complex distributed systems,
offering features like automated load balancing and self-healing.

A Slurm cluster, powered by the "Simple Linux Utility for Resource Management"
software, is a high-performance computing environment that efficiently manages and
schedules computing tasks across multiple nodes. This open-source system excels at job
scheduling, tracking resource availability, and prioritizing tasks based on user-defined
requirements. It uses job queues and provides fairness mechanisms, ensuring that higher-
priority jobs are accommodated without neglecting lower-priority ones. Slurm offers
access control features, facilitating user management and access policies, and is
designed to handle node failures gracefully, redistributing jobs to maintain efficiency. It is
a popular choice for scientific research, academic institutions, and organizations requiring
substantial computational power for tasks such as AI model training and customization,
simulations, and data analysis.

NVIDIA Base Command Manager Essentials allows customers to manage both
Kubernetes and Slurm clusters seamlessly. Base Command Manager Essentials can be
used to configure the PowerEdge server either as part of the Kubernetes cluster or the
Slurm cluster. They can be quickly reconfigured with just a reboot. This method allows
administrators to allocate resources quickly to either of the clusters on demand and with
minimal overhead.

We rely on Slurm and Kubernetes to provide secure clusters for model customization. For
this version of the design, we used a Slurm cluster for running model customization. This
design does not address any additional security considerations.

Network infrastructure
This validated design incorporates two physical networks: Ethernet network for
management, storage, and client/server traffic (sometimes referred to as north/south
traffic) and InfiniBand network for internode communication (sometimes referred to as
east/west traffic) used for distributed training.

 Chapter 4: Solution Architecture

21 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Ethernet connectivity
For Ethernet, organizations can choose between 25 Gb or 100 Gb networking
infrastructure based on their specific requirements. For LLM customization tasks using
text data, we recommend using Dell PowerSwitch Z9432F-ON which adequately meets
text data's bandwidth demands.

PowerSwitch S5232F-ON or PowerSwitch S5248F-ON can also be used as the network
switch. PowerSwitch S5232F-ON supports both 25 Gb and 100 Gb Ethernet, while
PowerSwitch S5248F-ON is a 25 Gb Ethernet switch.

You can use ConnectX-6 Network adapters for network connectivity. They are available in
both 25 Gb and 100 Gb options.

InfiniBand connectivity
When model customization requires multiple servers for LLM training, you must connect
these servers with high-speed interconnect. InfiniBand is a preferred choice for internode
connectivity in LLM customization due to its high-bandwidth capabilities that facilitate swift
data transfers between nodes, particularly essential when handling large datasets and
complex neural networks. Low latency communication is crucial for synchronous model
training, and InfiniBand’s low latency ensures rapid exchange of updates between nodes,
contributing to synchronization and overall efficiency in distributed training.

Additionally, InfiniBand natively supports collective operations such as all-reduce, which
are fundamental operations in AI model training. InfiniBand’s support for Remote Direct
Memory Access (RDMA) allows data to be transferred directly between the memory of
one node and another, reducing CPU involvement and minimizing latency. Reliability in
data transfer is maintained, reducing the chances of data loss or errors. Overall,
InfiniBand’s combination of high performance, low latency, scalability, and reliability
makes it an ideal choice for AI model training on distributed computing clusters, expediting
the training of sophisticated models and addressing complex machine learning
challenges.

In this validated design, we used the following:

• HDR configuration─Eight NVIDIA ConnectX-6 Single Port HDR200 InfiniBand
adapters and NVIDIA Quantum QM8790 InfiniBand switch

• NDR configuration─Eight NVIDIA ConnectX-7 Single Port NDR200 InfiniBand
adapters and NVIDIA Quantum QM9790 InfiniBand switch.

Customers can choose either the NDR or HDR configurations.

Note: We recommend eight single ConnectX InfiniBand adapters for each server to take
advantage of GPU Direct RDMA. Each GPU in the PowerEdge XE9680 server requires a
dedicated InfiniBand port.

Management infrastructure
The management infrastructure ensures the seamless deployment and orchestration of
the AI model customization system. NVIDIA Base Command Manager Essentials
performs bare metal provisioning, cluster deployment, and ongoing management tasks.
Deployed on a PowerEdge R660 server that serves as a head node, NVIDIA Base
Command Manager Essentials simplifies the administration of the entire cluster.

Chapter 4: Solution Architecture

22 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

To enable efficient container orchestration, a cluster is deployed in the compute
infrastructure using NVIDIA Base Command Manager Essentials. To ensure high
availability and fault tolerance, we recommend installation of the Kubernetes control plane
on three PowerEdge R660 servers. The management node can serve as one of the
control plane nodes.

Cluster configuration explains that you have the flexibility to select either Slurm,
Kubernetes, or both clusters according to your needs. If you choose a Slurm cluster, we
recommend that you set up three management nodes. This proactive approach future-
proofs your deployment and ensures compatibility for any potential Kubernetes
deployments in the future.

Storage infrastructure
Local storage that is available in PowerEdge servers provides operating system and
container storage. The NeMo Framework might create temporary files and checkpoints
that require large amount of storage. This storage can be mapped to local storage, and
we recommend using high-capacity local storage.

The need for external storage for AI model customization depends on the specific
requirements and characteristics of the AI model and the number of parameters and
complexity of the fine-tuning process.

In this design, we recommend PowerScale storage as a repository for datasets for model
customization, models, model versioning and management, and model ensembles. We
also recommend it for storage and archival of inference data, including capture and
retention of prompts and outputs when the model customization has been completed and
put into inferencing operations. These recommendations can be useful for marketing and
sales or customer service applications where further analysis of customer interactions
might be desirable.

The flexible, robust, and secure storage capabilities of PowerScale offer the scale and
speed necessary for training and operationalizing AI models, providing a foundational
component for AI workflow. Its capacity to handle the vast data requirements of AI,
combined with its reliability and high performance, cements the crucial role that external
storage plays in successfully bringing AI models from conception to application.

Foundational model and model customization framework
As described in Chapter 2, this validated design uses the NeMo framework for model
customization with the Llama 2 model as a recommended foundational model.

 Chapter 4: Solution Architecture

23 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

MLOps
Organizations seeking comprehensive model life cycle management can optionally deploy
MLOps platforms and toolsets, like cnvrg.io, Kubeflow, MLflow, and others.

MLOps integrates machine learning with software engineering for efficient deployment
and management of models in real-world applications. In generative AI, MLOps can
automate model deployment, ensure continuous integration, monitor performance,
optimize resources, handle errors, and ensure security and compliance. It can also
manage model versions, detect data drift, and provide model explainability. These
practices ensure generative models operate reliably and efficiently in production, which is
critical for interactive tasks like content generation and customer service chatbots.

cnvrg.io delivers a full-stack MLOps platform that helps simplify continuous training,
tuning, and deployment of AI and ML models. With cnvrg.io, organizations can automate
end-to-end ML pipelines at scale and make it easy to place training or inferencing
workloads on CPUs and GPUs based on cost and performance trade-offs. For more
information about a reference architecture for cnvrg.io on Kubernetes, see the design
guide Optimize Machine Learning through MLOPs with Dell Technologies and cnvrg.io.

Note: cnvrg.io and other popular MLOps platforms are only supported on the Kubernetes cluster.
If you choose to use an MLOPs platform on Kubernetes, you must account for the scheduling
considerations on Kubernetes and how it compares with Slurm as explained in Cluster
configuration.

With all the architectural elements described in this section for the Dell Validated Design
for Generative AI Model Customization, organizations can confidently implement high-
performance, efficient, and reliable AI infrastructure for model customization. The
architecture's modularity and scalability offer flexibility, making it well suited for various AI
workflows, while its primary focus is on generative AI model customization.

Physical architecture

Selecting the appropriate server and network configuration for generative AI model
customization is crucial to ensure adequate resources are allocated for model training.
This section provides example configurations for both management and compute
workloads and network architecture.

https://infohub.delltechnologies.com/t/design-guide-optimize-machine-learning-through-mlops-with-dell-technologies-cnvrg-io-1/

Chapter 4: Solution Architecture

24 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

PowerEdge R660 head and control plane node
The following table provides the recommended minimum configuration for the
management head node and the control plane node:

Table 3. PowerEdge R660 head node and control plane configuration

Component Head node and control plane nodes

Server model 3 x PowerEdge R660

CPU 1 x Intel Xeon Gold 6426Y 2.5G, 16C/32T

Memory 8 x 16 GB DDR5 4800 MT/s RDIMM

RAID controller PERC H755 with rear load Brackets

Storage 4 x 960 GB SSD vSAS Read Intensive 12 Gbps 512e 2.5in Hot-
Plug, AG Drive SED, 1DWPD

PXE network 1 x Broadcom 5720 Dual Port 1 GbE Optional LOM

PXE/K8S network 1 x NVIDIA ConnectX-6 Lx Dual Port 10/25 GbE SFP28, OCP NIC
3.0

Kubernetes/storage
network (optional)

1 x NVIDIA ConnectX-6 Lx Dual Port 10/25 GbE SFP28 Adapter,
PCIe

InfiniBand network
(Optional)

1 x NVIDIA ConnectX-7 Single Port NDR OSFP PCIe, No Crypto,
Full Height or
1 x NVIDIA ConnectX-6 Single Port HDR200 VPI InfiniBand
Adapter PCIe

Consider the following recommendations for head and control plane node configuration:

• We recommended three PowerEdge servers for management. Install NVIDIA
Base Command Manager Essentials on one of the servers. If you require high
availability, you can install NVIDIA Base Command Manager Essentials on two
nodes as active-passive. Install Kubernetes control plane on all the three nodes.
Therefore, one node acts as both an NVIDIA Base Command Manager head
node and a Kubernetes control plane node. We do not recommend a single node
Kubernetes Control plane.

• We recommend the same hardware configuration for all three head nodes for
ease of configuration and maintenance.

• Because both the head node and control plane node do not require heavy
computing, a single-processor server is sufficient.

• For the head node, we recommend a storage-rich configuration to facilitate
convenient storage of images and other essential tools. We recommend a
minimum of four SSD drives. You can choose more drives or upgrade to NVMe
for better performance.

• One or two management servers can connect to the InfiniBand fabric. OpenSM is
an InfiniBand compliant Subnet Manager service that can be run on any server on
the InfiniBand fabric, however we recommend running this service on any of the
management servers.

Management
server
configuration

 Chapter 4: Solution Architecture

25 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

PowerEdge XE9680 servers can be configured as worker nodes for Generative AI model
customization. The following table provides a recommended configuration for a
PowerEdge XE9680 GPU worker node:

Table 4. PowerEdge XE9680 GPU worker node

Component Details

Server model PowerEdge XE9680

CPU 2 x Intel Xeon Platinum 8468 2.1G, 48 C/96 T, 16 GT/s

Memory 16 x 64 GB RDIMM, 4800 MT/s Dual Rank

Storage 2 x 1.92 TB Enterprise NVMe Read Intensive AG Drive U.2 Gen4 with carrier

PXE Network Broadcom 5720 Dual Port 1 GbE Optional LOM

Kubernetes 1 x Intel E810-XXV Dual Port 10/25GbE SFP28, OCP NIC 3.0

Storage network 2 x NVIDIA ConnectX-6 DX Dual Port 100 GbE QSFP56 Network Adapter

GPU 8 x NVIDIA H100 SXM

InfiniBand Network 8 x NVIDIA ConnectX-7 Single Port NDR OSFP PCIe, No Crypto, Full Height or
8 x Mellanox ConnectX-6 Single Port HDR200 VPI InfiniBand Adapter PCIe

Internally, each XE9680 has four PCIe switches. Since two GPUs are connected to each
PCIe switch, for maximum throughput and performance, each PCIe switch has been
subdivided into two virtual switches. Therefore, for optimal GPU network performance, we
recommend that each GPU has a dedicated network adapter. We recommend four
InfiniBand adapters for the XE8640 and eight InfiniBand adapters for the XE9680.

While LLM tasks primarily rely on GPUs and do not significantly tax the CPU and memory,
it is advisable to equip the system with high-performance CPUs and larger memory
capacities. This provisioning ensures sufficient headroom for various data processing
activities, machine learning operations, monitoring, and logging tasks. Our goal is to
guarantee that the servers boast ample CPU and memory resources for these functions,
preventing any potential disruptions to the critical AI operations carried out on the GPUs.

GPU worker
node
configuration

Chapter 4: Solution Architecture

26 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

The following figure shows the network architecture. It shows the network connectivity for
compute servers. The figure also shows three PowerEdge head nodes, which incorporate
NVIDIA Base Command Manager Essentials and Kubernetes control plane nodes.

Figure 4. Networking design

Networking
design

OOB
Uplink

OOB

VLTi x2

Storage
Fabric 1

Storage
Fabric 2

Datacenter
network

PowerEdge R660 Base Command
Manager Essentials and Kubernetes

Management Nodes

PowerSwitch S52xx/S54xx/
Z94xx Series Ethernet

 Chapter 4: Solution Architecture

27 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

This validated design requires the following networks to manage the cluster and facilitate
communication and coordination between different components and nodes in the cluster:

• Management network—This network is used for communication between the
management server and the cluster nodes. It allows the management server to
send commands, configurations, and updates to the nodes. It also enables the
nodes to report status, resource usage, and other information back to the
management server. This network also serves as the Kubernetes network for
internode communication in the cluster. It allows the nodes, Kubernetes pods, and
services to exchange data, synchronize tasks, and collaborate efficiently during
cluster operations.

• External/data center network—The external network connects the cluster to the
Internet, allowing the cluster nodes to communicate with external systems,
services, and the Internet. This network is essential for accessing external
resources, downloading software updates, and interacting with users or applications
outside the cluster.

• Storage network—In some configurations, a dedicated storage network might be
used to facilitate data transfer between the cluster nodes and storage devices. This
network helps to optimize data access and reduce latency for storage operations.

• OOB and PXE network—The out-of-band (OOB) network is a separate and
dedicated network infrastructure used for managing and monitoring servers. It is a
1Gb Ethernet network that connects to the Integrated Dell Remote Access
Controller (iDRAC) of the PowerEdge servers in the cluster. This network is also
used for PXE to automate the provisioning and deployment of operating systems.

• InfiniBand network – This network is used for internode and GPU communication
for distributed training.

Chapter 4: Solution Architecture

28 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

The following figure shows an example rack design for four PowerEdge XE9680 servers.

Figure 5. Example rack configuration for Validated Design for Model Customization

This rack was created by using the Dell Enterprise Infrastructure Planning Tool (with the
illustrations of the switches enhanced). The rack weighs approximately 1400 lb. The
actual weight might depend on the components in the configuration. Use the tool to
configure your solution and receive weight, power requirement, airflow, and other details.

The following table provides the APC Power Distribution Unit (PDU) recommendations for
the Americas region. We recommend that you consult your Dell or APC representative to
understand your unique data center requirements to provide an accurate PDU
recommendation.

Table 5. Example PDU recommendations for the PowerEdge XE9680 server

Servers per cabinet Rack U height APC PDU model

2 42 AR3300

4 42 AR3350

2 48 AR3307

4 48 AR3357

Rack design and
Power
Distribution

https://dell-ui-eipt.azurewebsites.net/#/

 Chapter 5: Validation Results

29 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Chapter 5 Validation Results

The Dell Validated Design for Generative AI Model Customization aims to simplify and
accelerate the deployment of complex infrastructure for generative AI by providing
validated and proven architectures. It helps customers by reducing the guesswork and
potential risks associated with designing and implementing initial custom solutions.

We validated SFT, LoRA, and P-tuning model customization techniques with Llama 2
models on our reference architecture to ensure the Dell and NVIDIA hardware and
software are optimized and integrated to deliver reliable and high-performance solutions.

System configurations
The following tables list the system configurations and software stack used for the
validation efforts in this design, one with InfiniBand High Data Rate (HDR) and the other
with Next Data Rate (NDR):

Table 6. System configuration

Component Config 1 (HDR) Config 2 (NDR)

Compute server for
model customization

2 x PowerEdge XE9680 2 x PowerEdge XE9680

GPUs 8 x NVIDIA H100 SXM GPUs 8 x NVIDIA H100 SXM GPUs

Ethernet Network
adapters

• 1 x Intel E810-XXV Dual
Port 10/25GbE SFP28,
OCP NIC 3.0

• 2 x NVIDIA ConnectX-6
DX Dual Port 100 GbE

• 1 x Intel E810-XXV Dual Port
10/25GbE SFP28, OCP NIC
3.0

• 2 x NVIDIA ConnectX-6 DX
Dual Port 100 GbE

Ethernet Network switch 2 x PowerSwitch S5248F-ON 2 x PowerSwitch S5248F-ON

InfiniBand Network
adapter

8 x Mellanox ConnectX-6
Single Port HDR200 VPI
InfiniBand Adapter PCIe

8 x NVIDIA ConnectX-7 Single
Port NDR OSFP PCIe, No Crypto,
Full Height

InfiniBand Network
switch

QM8790 QM9790

Table 7. Software components and versions

Component Details

Operating system Ubuntu 22.04.1 LTS

Cluster management NVIDIA Base Command Manager Essentials 9.2

Slurm cluster Slurm 23.02.4

AI framework NVIDIA NeMo Container v23.08.03

Chapter 5: Validation Results

30 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

Model customization validation
The goal of our validation is to ensure the reliability, optimal performance, scalability, and
interoperability of the system. Model customization yields an LLM that incorporates
domain-specific knowledge. We validated our design to ensure the functionality of model
customization techniques available in the NeMo framework. Our goal in this validation was
not to train a model to convergence. The following list provides the details of our validation
setup:

• Foundational model─We validated 7B, 13B, and 70B Llama 2

• Model customization techniques─We use the following techniques:

o Prompt engineering─Table 3 shows prompt engineering results.

o SFT, P-Tuning, and LoRA─The following sections show the results
of these methods. Appendix A shows the Slurm scripts that we used
to launch the jobs.

• Dataset─We used two datasets for this validation:

o Dolly dataset from Databricks (databricks-dolly-15k) is an open-
source dataset of instruction-following records generated by
thousands of Databricks employees in several of the behavioral
categories outlined in the InstructGPT paper. The categories include
brainstorming, classification, closed QA, generation, information
extraction, open QA, and summarization.

o Alpaca is a dataset of 52,000 instructions and demonstrations
generated by OpenAI's text-davinci-003 engine. This instruction data
can be used to conduct instruction-tuning for language models and
make the language model follow instructions better.

• Time for training─As stated earlier, our goal was to not run the training to
convergence for every scenario. We ran the training jobs for a minimum of 50
steps.

https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://arxiv.org/abs/2203.02155
https://huggingface.co/datasets/tatsu-lab/alpaca

 Chapter 5: Validation Results

31 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

The following table summarizes the scenarios we validated and the configuration that we
used.

Table 8. Validated scenario configuration

 Llama 2 7B Llama 2 13B Llama 2 70B

Validated on a single PowerEdge XE9680 server

SFT Number of GPUs: 4,8
TP: 2
PP: 1
Maximum number of steps: 50

Number of GPUs: 4,8
TP: 4
PP: 1
Maximum number of steps: 50

Number of GPUs: 4,8
TP: 8
PP: 1
Maximum number of steps: 50

P-Tuning Number of GPUs: 4,8
TP: 1
PP: 1
Maximum number of steps: 1000

Number of GPUs: 4,8
TP: 2
PP: 1
Maximum number of steps:
1000

Number of GPUs: 8
TP: 8
PP: 1
Maximum number of steps: 1000

LoRA Number of GPUs: 4,8
TP: 1
PP: 1
Maximum number of steps: 1000

Number of GPUs: 4,8
TP: 2
PP: 1
Maximum number of steps: 1000

Number of GPUs: 8
TP: 8
PP: 1
Maximum number of steps: 1000

Validated on two PowerEdge XE9680 server (multinode)

P-Tuning Number of GPUs: 16
TP: 4
PP: 1
Maximum number of steps: 50

Number of GPUs: 16
TP: 4
PP: 1
Maximum number of steps: 50

Number of GPUs: 16
TP: 8
PP: 1
Maximum number of steps: 50

LoRA Number of GPUs: 16
TP: 4
PP: 1
Maximum number of steps: 50

Number of GPUs: 16
TP: 4
PP: 1
Maximum number of steps: 50

Number of GPUs: 16
TP: 8
PP: 1
Maximum number of steps: 50

In the preceding table:

• TP refers to Tensor Parallelism. It is a technique used to distribute the
computations and memory across multiple GPUs, in a single layer or operation in a
neural network. It is particularly useful when dealing with models that are too large
to fit in the memory of a single device. Tensor Parallelism divides the computation
graph into smaller tensors and distributes them across multiple devices, enabling
parallel processing and reducing the time required for training.

• PP refers to Pipeline Parallelism. It is a technique used to improve the efficiency of
training by splitting the model into smaller, connected stages or segments. Each
stage processes a portion of the data, and the results are passed sequentially from
one stage to the next. This method allows for overlapping computation and
communication, reducing idle time and improving overall training speed. Pipeline
Parallelism is especially useful for very deep models with many layers, as it helps
exploit parallelism in the forward and backward passes of the neural network.

Chapter 5: Validation Results

32 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

To illustrate the validation, we provided a few example results. The appendix includes the
Slurm batch file that initiates the model customization job.

The following figure illustrates the training loss for Llama 2 70B on two nodes:

Figure 6. Training loss for Llama 2 70B on two nodes

For the same experiments, the following figure shows how the learning rate adapted
during model customization:

Figure 7. Learning rate adapted during model customization

 Chapter 6: Performance Characterization

33 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Chapter 6 Performance Characterization

Overview
Sizing the infrastructure for LLM customization is essential due to the computational
demands, high memory requirements, and unique characteristics of these models and
tasks. It is crucial to achieve optimal performance, efficient resource utilization, and
reduced downtime. It ensures that the infrastructure can handle the computational and
memory requirements of model customization tasks, resulting in faster convergence and
reduced operational costs. Properly sized infrastructure also supports scalability for future
growth in model size and dataset volume, enhances training time, and maintains
consistent quality in fine-tuned models. By preventing underutilization or overutilization of
resources, appropriate sizing simplifies management and aligns infrastructure capacity
with the demands of model customization. Overall, proper infrastructure sizing for LLM
model customization ensures optimal performance, scalability, and user experience while
managing operational costs effectively and removing any resource bottlenecks.

When sizing the infrastructure for model customization, consider several factors to ensure
optimal performance and efficiency:

• Data size and complexity─The size and complexity of the dataset used for model
customization can significantly impact infrastructure requirements. Large and
complex datasets might demand more computational power and memory. The size
of the data is typically measured in tokens or

• Model size─The size of the model being fine-tuned or customized is a critical
factor. Larger models require more memory and computational resources. Consider
the trade-off between model size and performance.

• Training method─The choice of training method, whether SFT, p-tuning, or LoRA,
can affect the infrastructure requirements. SFT is more computationally intensive
than PEFT.

• Batch size─The batch size used during training influences GPU memory
requirements. Larger batch sizes typically require more memory but can lead to
faster training convergence.

• GPUs and GPU connectivity─The type of GPU and connectivity between GPUs
also dictate the time to train a model. Also, the number of GPUs allocated to the
training job determine the time for convergence. In this design, we use a
PowerEdge XE9680 server equipped with NVIDIA H100 GPUs and NVSwitch.

• Parallelization─Implementing data parallelism or model parallelism (tensor
parallelism or pipeline parallelism) can distribute the workload across multiple
GPUs or nodes. Parallelization can reduce training time but requires infrastructure
capable of supporting it. For example, for multinode training, recommend the
InfiniBand interconnect between the servers.

Chapter 6: Performance Characterization

34 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

• Convergence time─Consider the acceptable training time and the trade-off
between quicker convergence and resource utilization. Shorter training times can
be more efficient but might require more powerful hardware.

Performance test results
In this section, we summarize the performance characteristics of customizing an LLM. The
experiments use the following configuration:

• Dataset: The Dolly dataset from Databricks. The model has the following
characteristics:

 Total number of samples in the train dataset: 12012

 Unique samples in the train dataset: 11895

 Maximum number of tokens in a sample in the train dataset: 8588

 Minimum number of tokens in a sample in the train dataset: 1

 Average number of tokens in a sample in the train dataset:
114.53571428571429

 Total tokens in the train dataset: 1375803

• Micro batch size: 1 (Micro batch size refers to the size of a small subset of data
samples processed at each step during training by each process/GPU.)

• Global batch size: 128 (Global batch size is the total number of data samples
processed in a single training step. Global batch size = Micro batch size * Data
Parallel Size * Gradient Accumulation steps. See the NVIDIA NeMo
documentation.)

• Number of steps: Training step refers to a single iteration of the training process in
which a model is updated based on a batch of input data. It involves backward
passes through the model to calculate gradients, which are then used to update the
model's parameters. The time for model convergence depends on the dataset, the
model, and hyperparameters. Typically, the models can converge anywhere
between 1000 to 2000 steps. We used the following number of steps:

 For LoRA and P-tuning with Llama 2 7B and 13B models, we used 1000 steps.

 For LoRA and P-tuning with Llama 2 70B and for SFT for all three Llama
models, we used 50 steps and the results presented are extrapolated values.

• We used Tensor Parallelism and Pipeline Parallelism (see Table 8).

Note: The results presented here are based on our validation process and are not optimized for
optimal performance. Therefore, do not use these findings for direct performance comparisons
between the server and other hardware. As we continue our work, this document will be revised to
reflect the most effective configurations. Dell Technologies has published benchmarking results
using MLPerf that you can use for performance comparison.

https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/batching.html
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/nlp/nemo_megatron/batching.html
https://mlcommons.org/en/training-normal-30/

 Chapter 6: Performance Characterization

35 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

The following table shows the time that we measured for model customization. It includes
the time to train the model for 1000 steps. It does not include time to load the model, load
the dataset, and perform validation.

Table 9. Time for model customization for various models and customization methods on
a single node PowerEdge XE9680 server

Models Number of
GPUs

LoRA (time in
minutes)

P-tuning (time
in minutes)

SFT (time in
minutes)

Llama 2 7B 4 102 100 3802

Llama 2 7B 8 79 78 N/A

Llama 2 13B 4 248 220 8202

Llama 2 13B 8 174 166 6602

Llama 2 70B 8 9852 8672 N/A

We have made the following observations:

• All customization methods scale well when adding GPU resources.

• Both LoRA and P-tuning require considerably less training time compared to SFT.
This efficiency occurs because SFT involves updating all the model's parameters,
whereas LoRA and P-tuning focus on modifying only a smaller subset of
parameters. For many practical scenarios, beginning with LoRA or P-tuning as the
preferred model customization approach is advisable.

• Running SFT model customization for Llama 2 70B on eight GPUs requires more
resources than what is currently available in a single PowerEdge XE9680 server.

• Although the SFT technique with Llama 2 7B was completed successfully, it
exhibited fluctuating training times. We are currently investigating the runs and will
provide an update to this document when we pinpoint the underlying cause.

Sizing and scaling guidelines
Enterprises seeking to embrace generative AI are likely to embark on multiple projects,
each requiring various trained and customized models. Deploying a cluster of PowerEdge
XE9680 servers managed by NVIDIA Base Command Manager equips customers with a
high-performance environment for training and fine-tuning multiple models. As demand
grows, the cluster's size can be effortlessly expanded using Base Command Manager.
Newly added servers can seamlessly join the cluster and be deployed using the same
image as the existing PowerEdge XE9680 servers, facilitating a straightforward scaling
process.

The current configuration accommodates up to eight PowerEdge XE9680 servers. Beyond
this capacity, consider switching options and topology for further expansion.

2 Training time is extrapolated from 50 steps to 1000 steps.

Chapter 7: Dell Professional Services for Generative AI

36 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

Chapter 7 Dell Professional Services for
Generative AI

Dell Professional Services for Generative AI harness the power of this rapidly evolving
technology in a meaningful and secure way to drive the outcomes that your business
expects. By partnering with Dell Technologies, your business can confidently advance
generative AI initiatives. You can rely on us every step of the way, with services for
strategy, implementation, adoption, and scaling generative AI solutions across your
organization, including the Dell Validated Design for Generative AI Model Customization
with NVIDIA.

Advisory Services for Generative AI
Create a strategy and road map to achieve your generative AI vision:

• Leverage the proven methodology of Dell ProConsult Advisory Services to help you
define your ideal future state, design a new generative AI solution architecture, and
identify required IT skills.

• Gain consensus from business and IT leaders for prioritized use cases for
generative AI.

• Create and validate a generative AI road map and next steps aligned to use cases.

• Identify how generative AI can streamline business and technical processes using
Dell’s validated process optimization with value stream-mapping approach.

Implementation Services for Generative AI
Establish your generative AI inferencing platform, primed for innovation:

• Establish an operational generative AI platform for inferencing and model
customization aligned to Dell Validated Design for Generative AI with NVIDIA.

• Prepare enterprise data for Large Language Model integration and ensure data
integrity through a rigorous process of identifying data requirements, cleansing,
labeling, and anonymizing datasets.

• Take advantage of knowledge transfer and best practice sharing to set your IT
teams up for future success.

 Chapter 7: Dell Professional Services for Generative AI

37 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Adoption Services for Generative AI
Accelerate time-to-value for your use cases:

• Through multiple workshops, Dell professionals align with project stakeholders to
review your use cases and determine the best model to meet your needs.

• With your unique use cases in mind, Dell generative AI experts deploy and
configure the pretrained model for your business.

• We then conduct knowledge transfer sessions covering software stack use,
architecture, and best practices for adoption of your new inferencing model.

Managed Services for Generative AI
The fully managed NVIDIA-based generative AI solution:

• With Dell Managed Services for Generative AI, Dell Technologies can operate the
full NVIDIA-based generative AI solution, improving operational efficiency and
allowing you to focus on building your generative AI use cases.

• Enables teams to focus attention on customizing and tailoring models while Dell
experts take care of operating the generative AI infrastructure and simplifying
Generative AI operations.

• Includes deploying the full solution stack, monitoring, managing, and continuous
optimization of infrastructure and the Generative AI platform, availability monitoring
and performance tracking, management of day-to-day activities, and 24x7 delivery
and support.

For more information, see Dell Managed Services for MLOps | Dell USA.

Scale Services for Generative AI
Optimize processes and advance a generative AI mindset throughout your organization:

• Enlist Dell experts to fully manage your generative AI environment with Managed
Services for Generative AI.

• Address key IT skills gaps with Education Services for Generative AI; we work
directly with your team and ensure your team has the skills to be successful.

• Dell residents extend internal capabilities and skills to drive your generative AI
initiative and keep your generative AI infrastructure using the Dell Validated Design
for Generative AI with NVIDIA running at its peak.

https://www.dell.com/en-us/lp/dt/managed-services-mlops?hve=explore&ref=cpcl_generative-ai-services-2up-item30_cta_primaryv2_learnmore

Chapter 8: Conclusion

38 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

Chapter 8 Conclusion

Summary
The Dell Validated Design for Generative AI Model Customization with NVIDIA has been
developed to address the needs of enterprises that need to develop and run custom
Generative AI LLMs using domain-specific data that is relevant to their own organization.

Dell Technologies and NVIDIA have designed a scalable, modular, and high-performance
architecture that enables enterprises to quickly design and deploy a customization and
inferencing solution that has been validated and performance-tested to accelerate the
time to value and to reduce the risk and uncertainty by using a proven design.

This guide provides design guidance and a fully validated reference architecture for
generative AI model customization. We discussed the following topics:

• An explanation of foundation LLMs and their key characteristics

• Descriptions and examples of several types of model customization methods and
how they fit into the AI model development life cycle

• Descriptions of the primary NVIDIA software components used for customization,
including NVDIA AI Enterprise, the NeMo framework for generative AI models,
Triton Inference Server, TensorRT-LLM, and NVIDIA Base Command Manager
Essentials

• Details about the Dell Technologies and NVIDIA infrastructure used in the design.
From Dell Technologies, the infrastructure primarily includes Dell PowerEdge
servers, PowerScale storage, and PowerSwitch networking, while the NVIDIA
infrastructure consists of NVIDIA H100 GPUs, CX6/CX7 network adapters, and
QM9700 switches.

• A detailed description of the reference architecture for generative AI model
customization, including both the physical hardware and the software architecture

• A presentation of the validation results, including the numerous models used for
validation and the multiple validation scenarios

• A listing of the performance test results and how they influence the infrastructure
sizing recommendations

• Descriptions of the Dell professional consulting services that have been designed
specifically for this validated design for generative AI, including advisory,
implementation, adoption, and scaling services

While this design focuses on model customization of pretrained foundation models, it is
the second in a series of validated designs for generative AI that focus on all facets of the
generative AI life cycle, including inferencing, model customization, and model training.
While these designs focus on generative AI use cases, the architecture is more broadly
applicable to more general AI use cases as well.

 Chapter 8: Conclusion

39 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

With this project, Dell Technologies and NVIDIA enable organizations to deliver full-stack
generative AI solutions built on the best of Dell infrastructure and software, combined with
the latest NVIDIA accelerators, AI software, and AI expertise. This combination of
components enables enterprises to use purpose-built generative AI on-premises to solve
their business challenges. Together, we are leading the way in driving the next wave of
innovation in the enterprise AI landscape.

We value your feedback
Dell Technologies and the authors of this document welcome your feedback on the
solution and the solution documentation. Contact the Dell Technologies Solutions team by
email.

mailto:dell.solution.feedback?subject=Generative%20AI%20in%20the%20Enterprise%20-%20Model%20Customization%20Design%20Guide%20(H19825)

Chapter 9: References

40 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

Chapter 9 References

The following links provide additional information about the solution design and
components in this guide.

Dell Technologies documentation
The following Dell Technologies documentation provides additional and relevant
information.

• Dell Generative AI Solutions (Dell.com/ai)

• Dell Info Hub for AI

• White Paper – Generative AI in the Enterprise

• Design Guide – Generative AI in the Enterprise - Inferencing

• GPU Optimization with Run:ai Atlas

NVIDIA documentation
The following NVIDIA documentation provides additional and relevant information:

• What is NeMo?

• NVIDIA AI Enterprise documentation

• Optimizing Inference on Large Language Models with NVIDIA TensorRT-LLM, Now
Publicly Available

• Blog - Selecting Large Language Model Customization Techniques

• NeMo User Guide

Other documentation
The following documentation provides additional and relevant information:

• Dolly Dataset

• Llama 2: Open Foundation and Fine-Tuned Chat Models

• Meta’s Responsible Use Guide for Llama 2

https://www.dell.com/en-us/dt/solutions/artificial-intelligence/index.htm#accordion0&tab0=0
https://infohub.delltechnologies.com/t/artificial-intelligence-12/
https://infohub.delltechnologies.com/t/generative-ai-in-the-enterprise/
https://infohub.delltechnologies.com/t/design-guide-generative-ai-in-the-enterprise-inferencing/
https://infohub.delltechnologies.com/t/gpu-optimization-with-run-ai-atlas/
https://catalog.ngc.nvidia.com/orgs/nvidia/containers/nemo
https://docs.nvidia.com/ai-enterprise/index.html
https://developer.nvidia.com/blog/optimizing-inference-on-llms-with-tensorrt-llm-now-publicly-available/
https://developer.nvidia.com/blog/optimizing-inference-on-llms-with-tensorrt-llm-now-publicly-available/
https://developer.nvidia.com/blog/selecting-large-language-model-customization-techniques
https://docs.nvidia.com/deeplearning/nemo/user-guide/docs/en/stable/index.html
https://huggingface.co/datasets/databricks/databricks-dolly-15k
https://ai.meta.com/research/publications/llama-2-open-foundation-and-fine-tuned-chat-models/

 Appendix A: Sample Scripts

41 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

Appendix A Sample Scripts

This appendix contains the sample scripts we used for the validation efforts described in
Chapter 5.

Supervised Fine Tuning with Llama 2 7B
The following example is of the Slurm batch file that we used for validation of SFT with
Llama 2 7B:

#!/bin/bash

Parameters
#SBATCH --error=%j.err
#SBATCH --gpus-per-node=8
#SBATCH --job-name=singlenode-sft
#SBATCH --nodes=1
#SBATCH --nodelist=node015
#SBATCH --ntasks-per-node=8
#SBATCH --output=%j.out
#SBATCH --partition=slr-9680-hdr
#SBATCH --time=6-00:00:00

TRAIN_DS="[/dataset/data/training.jsonl]"
VALID_DS="[/dataset/data/validation.jsonl]"
TEST_DS="[/dataset/data/test.jsonl]"
VALID_NAMES="[databricks-dolly-15k]"
CONCAT_SAMPLING_PROBS="[1.0]"
TP_SIZE=2
PP_SIZE=1
MODEL="/models/llama2-7b-bf16-tp1.nemo" #llama2-13b-bf16-tp4.nemo" llama2-7b-bf16-
tp1.nemo

export CUDA_LAUNCH_BLOCKING=1
module load docker/20.10.25

srun --container-mounts=/powerscale-
share/prem_sft/results/${SLURM_JOBID}/:/results,/dev/infiniband/:/dev/infiniband,/
powerscale-share/llm/datasets/databricks-dolly-15k/:/dataset,/powerscale-
share/llm/models/NeMo-models/llama2-NGC-v2.0/:/models --container-
image="docker://nvcr.io/ea-bignlp/ga-participants/nemofw-training:23.08.03" bash -
c "python /opt/NeMo/examples/nlp/language_modeling/tuning/megatron_gpt_sft.py \
trainer.precision=bf16 \
trainer.devices=8 \
trainer.num_nodes=1 \
trainer.val_check_interval=0.5 \

Appendix A: Sample Scripts

42 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

trainer.max_steps=50 \
model.restore_from_path=${MODEL} \
model.micro_batch_size=1 \
model.global_batch_size=128 \
model.tensor_model_parallel_size=${TP_SIZE} \
model.pipeline_model_parallel_size=${PP_SIZE} \
model.megatron_amp_O2=True \
model.sequence_parallel=True \
model.activations_checkpoint_granularity=selective \
model.activations_checkpoint_method=uniform \
model.optim.name=distributed_fused_adam \
model.optim.lr=5e-6 \
model.answer_only_loss=True \
model.data.train_ds.file_names=${TRAIN_DS} \
model.data.validation_ds.file_names=${VALID_DS} \
model.data.test_ds.file_names=${TEST_DS} \
model.data.train_ds.concat_sampling_probabilities=${CONCAT_SAMPLING_PROBS} \
model.data.train_ds.max_seq_length=2048 \
model.data.validation_ds.max_seq_length=2048 \
model.data.train_ds.micro_batch_size=1 \
model.data.train_ds.global_batch_size=128 \
model.data.validation_ds.micro_batch_size=1 \
model.data.validation_ds.global_batch_size=128 \
model.data.test_ds.micro_batch_size=1 \
model.data.test_ds.global_batch_size=256 \
model.data.train_ds.num_workers=0 \
model.data.validation_ds.num_workers=0 \
model.data.test_ds.num_workers=0 \
model.data.validation_ds.metric.name=loss \
model.data.test_ds.metric.name=loss \
exp_manager.exp_dir=/results \
exp_manager.create_checkpoint_callback=True \
exp_manager.checkpoint_callback_params.save_nemo_on_train_end=True"

 Appendix A: Sample Scripts

43 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization

Design Guide

LoRA with Llama 2 70B on two nodes
The following example is of the Slurm batch file that we used for validation of LoRA with
Llama 2 70B:

#!/bin/bash

Parameters
#SBATCH --error=%j.err
#SBATCH --gpus-per-node=8
#SBATCH --job-name=peft-lora
#SBATCH --nodes=2
#SBATCH --nodelist=node0[12-13]
#SBATCH --ntasks-per-node=8
#SBATCH --output=%j.out
#SBATCH --partition=defq
#SBATCH --time=6-00:00:00

TRAIN_DS="[/datasets/training.jsonl]"
VALID_DS="[/datasets/validation.jsonl]"
TEST_DS="[/datasets/test.jsonl]"
VALID_NAMES="[databricks-dolly-15k]"
RESTORE_PATH="/home/user/helix_output/"
CONCAT_SAMPLING_PROBS="[1.0]"
TP_SIZE=8
PP_SIZE=1
MODEL="/models/llama2-70b-bf16.nemo" #"/models/llama2-7b-bf16-tp1.nemo"
#"/models/llama2-13b-bf16-tp4.nemo" # #/models/llama2-70b-bf16.nemo

export HYDRA_FULL_ERROR=1
export NCCL_IB_HCA=mlx5_0,mlx5_3,mlx5_10,mlx5_11,mlx5_4,mlx5_5,mlx5_6,mlx5_9
export NCCL_IBEXT_DISABLE=1
export NCCL_DEBUG=INFO
export NCCL_IGNORE_CPU_AFFINITY=1

export MASTER_PORT=$(expr 10000 + $(echo -n $SLURM_JOBID | tail -c 4))
export WORLD_SIZE=$(($SLURM_NNODES * $SLURM_NTASKS_PER_NODE))
echo "WORLD_SIZE="$WORLD_SIZE

master_addr=$(scontrol show hostnames "$SLURM_JOB_NODELIST" | head -n 1)
export MASTER_ADDR=$master_addr
echo "MASTER_ADDR="$MASTER_ADDR

module load docker
module load cuda-dcgm/3.1.3.1
module load cuda12.2/toolkit/12.2.1

srun --container-
mounts=/dev/infiniband/:/dev/infiniband,/home/user/:/workspace,/powerscale-
share/llm/models/NeMo-models/llama2-NGC-v2.0/:/models,/powerscale-

Appendix A: Sample Scripts

44 Generative AI in the Enterprise - Model Customization
A Scalable and Modular Production Infrastructure with NVIDIA for AI Large Language Model Customization
Design Guide

share/llm/docker_tmp/tmp70b/:/tmp,/powerscale-
share/llm/docker_tmp/var70b:/var,/powerscale-
share/user/results/${SLURM_JOBID}:/results,/powerscale-
share/llm/datasets/databricks-dolly-15k/data/:/datasets --container-
image="nvcr.io/ea-bignlp/ga-participants/nemofw-training:23.08.03" bash -c
"export CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 && nvidia-smi topo -m && nvidia-smi
&& python
/opt/NeMo/examples/nlp/language_modeling/tuning/megatron_gpt_peft_tuning.py \
trainer.devices=8 \
trainer.num_nodes=2 \
trainer.precision=bf16 \
trainer.val_check_interval=30 \
trainer.max_steps=50 \
model.megatron_amp_O2=False \
++model.mcore_gpt=True \
exp_manager.create_wandb_logger=False \
exp_manager.resume_if_exists=True \
exp_manager.explicit_log_dir=/results \
exp_manager.resume_ignore_no_checkpoint=True \
exp_manager.create_checkpoint_callback=True \
exp_manager.checkpoint_callback_params.monitor=validation_loss \
exp_manager.checkpoint_callback_params.save_best_model=False \
exp_manager.checkpoint_callback_params.save_nemo_on_train_end=True \
model.tensor_model_parallel_size=${TP_SIZE} \
model.pipeline_model_parallel_size=${PP_SIZE} \
model.micro_batch_size=1 \
model.global_batch_size=8 \
model.restore_from_path=${MODEL} \
model.data.train_ds.num_workers=0 \
model.data.validation_ds.num_workers=0 \
model.data.test_ds.num_workers=0 \
model.data.train_ds.file_names=${TRAIN_DS} \
model.data.train_ds.concat_sampling_probabilities=[1.0] \
model.data.validation_ds.file_names=${VALID_DS} \
model.peft.peft_scheme='lora' \
model.data.train_ds.max_seq_length=2048 \
model.data.validation_ds.max_seq_length=2048" #\
model.optim.lr=0.001 \
model.peft.p_tuning.virtual_tokens=10"

	Generative AI in the Enterprise – Model Customization Design Guide
	Contents
	Chapter 1 Introduction
	Overview
	Document purpose
	Audience

	Chapter 2 Customizing Large Language Models
	Large language models
	Foundation models
	Parameters
	Tokenization
	Use cases

	What is model customization?
	Model customization in the generative AI workflow

	Model customization methods
	Model customization at inference
	Prompt engineering

	Model customization through retraining
	Supervised fine-tuning
	Parameter-Efficient Fine-Tuning

	Chapter 3 Solution Components
	Model customization using NVIDIA AI Enterprise
	NVIDIA NeMo framework
	Triton Inference Server
	TensorRT-LLM
	NVIDIA Base Command Manager Essentials

	Dell PowerEdge servers and NVIDIA GPUs
	Dell Servers
	GPU connectivity

	Dell PowerScale Storage
	PowerScale F900
	PowerScale F600

	Dell and NVIDIA networking
	NVIDIA Quantum Networking Switches
	Dell PowerSwitch

	Chapter 4 Solution Architecture
	Architecture overview
	Compute infrastructure
	Cluster configuration
	Network infrastructure
	Ethernet connectivity
	InfiniBand connectivity

	Management infrastructure
	Storage infrastructure
	Foundational model and model customization framework
	MLOps

	Physical architecture
	Management server configuration
	PowerEdge R660 head and control plane node

	GPU worker node configuration
	Networking design
	Rack design and Power Distribution

	Chapter 5 Validation Results
	System configurations
	Model customization validation

	Chapter 6 Performance Characterization
	Overview
	Performance test results
	Sizing and scaling guidelines

	Chapter 7 Dell Professional Services for Generative AI
	Advisory Services for Generative AI
	Implementation Services for Generative AI
	Adoption Services for Generative AI
	Managed Services for Generative AI
	Scale Services for Generative AI

	Chapter 8 Conclusion
	Summary
	We value your feedback

	Chapter 9 References
	Dell Technologies documentation
	NVIDIA documentation
	Other documentation

	Appendix A Sample Scripts
	Supervised Fine Tuning with Llama 2 7B
	LoRA with Llama 2 70B on two nodes

